High Fat Diet Induced Developmental Defects in the Mouse: Oocyte Meiotic Aneuploidy and Fetal Growth Retardation/Brain Defects
نویسندگان
چکیده
BACKGROUND Maternal obesity is associated with poor outcomes across the reproductive spectrum including infertility, increased time to pregnancy, early pregnancy loss, fetal loss, congenital abnormalities and neonatal conditions. Furthermore, the proportion of reproductive-aged woman that are obese in the population is increasing sharply. From current studies it is not clear if the origin of the reproductive complications is attributable to problems that arise in the oocyte or the uterine environment. METHODOLOGY/PRINCIPAL FINDINGS We examined the developmental basis of the reproductive phenotypes in obese animals by employing a high fat diet mouse model of obesity. We analyzed very early embryonic and fetal phenotypes, which can be parsed into three abnormal developmental processes that occur in obese mothers. The first is oocyte meiotic aneuploidy that then leads to early embryonic loss. The second is an abnormal process distinct from meiotic aneuploidy that also leads to early embryonic loss. The third is fetal growth retardation and brain developmental abnormalities, which based on embryo transfer experiments are not due to the obese uterine environment but instead must be from a defect that arises prior to the blastocyst stage. CONCLUSIONS/SIGNIFICANCE Our results suggest that reproductive complications in obese females are, at least in part, from oocyte maternal effects. This conclusion is consistent with IVF studies where the increased pregnancy failure rate in obese women returns to the normal rate if donor oocytes are used instead of autologous oocytes. We postulate that preconceptional weight gain adversely affects pregnancy outcomes and fetal development. In light of our findings, preconceptional counseling may be indicated as the preferable, earlier target for intervention in obese women desiring pregnancy and healthy outcomes.
منابع مشابه
A role for retrotransposon LINE-1 in fetal oocyte attrition in mice.
Fetal oocyte attrition (FOA) is a conserved but poorly understood process of elimination of more than two-thirds of meiotic prophase I (MPI) oocytes before birth. We now implicate retrotransposons LINE-1 (L1), activated during epigenetic reprogramming of the embryonic germline, in FOA in mice. We show that wild-type fetal oocytes possess differential nuclear levels of L1ORF1p, an L1-encoded pro...
متن کاملFetal Alcohol Syndrome
Background: About 40 thousand newborns are delivered annually with fetal alcohol syndrome (FAS). It induces serious CNS complications. Methods: In a review of, the word “fetal alcohol syndrome” was searched in PubMed and Google Scholar and the retrieved articles were summarized. Results: Many studies showed that alcohol can cause more defects in fetus than heroin, cocaine and marijuana. The pos...
متن کاملInadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice.
Errors in meiotic chromosome segregation are the leading cause of spontaneous abortions and birth defects. Almost all such aneuploidy derives from meiotic errors in females, with increasing maternal age representing a major risk factor. It was recently reported that histones are globally deacetylated in mammalian oocytes during meiosis but not mitosis. In the present study, inhibition of meioti...
متن کاملLoss of Maternal ATRX Results in Centromere Instability and Aneuploidy in the Mammalian Oocyte and Pre-Implantation Embryo
The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the ro...
متن کاملDevelopmental competence of human in vitro aged oocytes as host cells for nuclear transfer.
BACKGROUND Improving human nuclear transfer (NT) efficiencies is paramount for the development of patient-specific stem cell lines, although the opportunities remain limited owing to difficulties in obtaining fresh mature oocytes. METHODS Therefore, the developmental competence of aged, failed-to-fertilize human oocytes as an alternate cytoplasmic source for NT was assessed and compared with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012